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Magnetostatic Surface-Wave Transducers

JAMES C. SETHARES, ME~ER, IEEE

Abs&act-Magnetostatic surface-wave (MSSW) transducer theory is

extended and gerrerafized. A Fourier transform relation is eatabfished

between MSSW field amplitudes and transducer spatiaf current distribu-

tion. Expressions are developed for the radiation reafstance of peridIc

meander and grating transducers, spatiaf harmonic mnplitudesj and radia-

tion resistance for unffonn and nonuniform current distribution models.

An expression is given for the radiation resistance of apodim?d transrfueem.

The results enable one to predfet transducer frequency response for a

specified weighting of transducer element widthj Ieng@ and spacing.

I. INTRODUCTION

P

REVIOUS investigations [lJ–[7] related to magneto-

static surface-wave (MSSW) technology have sug-

gested the possibility of practical sophisticated passive

microwave devices for direct signal processing at micro-

wave frequencies. Such a technology would extend

processing capabilities now performed by SAW devices at

UHF frequencies into the microwave region, and would

constitute a significant advance in signal-processing capa-

bilities. A review of such magnetostatic-wave devices is

provided by Collins et al. [7] (1977) in which the relative

merits of CCD, SAW, and MSSW technologies are com-

pared as to their time-frequency characteristics. However,

very little general design theory has been available for

periodic MSSW transducers. Toward this end, MSSW

transducer theory is extended and generalized. Some re-

cent work along these lines has also been done by Emtage

[81 and Wu [5] et al. Emtage used a normal-mode ap-

proach to characterize a multielement transducer, and Wu

used superposition of independent conducting strip ele-

ments. The present work provides a quantitative relation

between the normal-mode approach and superposition. In

addition, Emtage analyzed the interaction of a current

strip with a magnetic system in terms of surface permea-

bilities. He defined a useful coupling constant and ob-

tained expressions for the power carried by a running

wave in a multilayer magnetic system, both in terms of

surface permeabilities. The surface permeability approach

is useful for analyzing multilayer magnetic systems. Wu

presented expressions for the insertion loss of multiele-

ment transducer pairs, along with experimental verific-
ation of their low-loss microstrip transducer model. Here, a
Fourier transform relation is established between MSSW

field amplitudes and transducer spatial current distribu-

tion. Design equations are presented, including radiation

resistance for periodic and nonperiodic meander and grat-

ing transducers, spatial harmonic amplitudes and radia-
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tion resistance for uniform and nonuniform current-dis-

tribution models, and radiation resistance for apodized

transducers. In addition, the transducer model presented

here differs from others in that the present one does not

contain microstrip parameters in the expression for radia-

tion resistance. A connection between the various models

is presented.

II. BASIC THEORY

A. Assumptions

The system analyzed in this report is shown in Fig. 1. A

transducer in the form of a meander or a grating line is

excited with an RF current. Transducer connections to

the ground plane structure and to input/output lines are

shown in Fig. 2. Currents produce RF magnetic fields

which generate a variety of propagating modes within the

structure. One particular mode having potential for signal

processing ‘directly at microwave frequencies is the

MSSW. This is the mode of interest here. It is nonrecipro-

cal, propagates perpendicular to the magnetic biasing

field, guided by two parallel surfaces (though they need

not be precisely parallel), and its energy is concentrated

near one surface. It propagates with a velocity between

that of acoustic and light waves (velocity is magnetically

tunable), it handles milliwatts of power, and, in practical

situations, its frequency range is between 2 and 15 GHz.

The mode is a coupled electromagnetic-ferromagnetic TE

mode for which Maxwell’s equations, the linearized

gyromagnetic equation, and EM boundary conditions are

simultaneously satisfied.

All important restrictions and assumptions made in the

analysis are listed below.

1) End effects caused by arrays of finite extent are

neglected.

2) MSSW power is calculated in the far-field region

where the transducer has negligible effect on propagation

modes.

3) The magnetostatic approximation V X ~=0 is em-

ployed.
4) Nonlinear effects are neglected.

5) A two-dimensional problem with uniformity along

the length of conduction strips is considered.

6) Good conductors are assumed and the thickness of

conducting strips approaches zero.l

1A consequence of the small thickness f and high conductivity u

conducting strip approximation is that when o+ co skin depth 8+0, and

then two limiting cases must be considered. When 8<< t, thickness t must
be assumed finite in the analyses. When 8> t, conduction strip thickness
can be neglected as is done here, As a practical matter, for aluminum at
3 GHz, tl~ 1.5 pm. In this case the present theory would be rigorous only
for strip thickness much less than 1.5 pm.

U. S. Government work not protected by U.S. copyright
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GRATING TRANSDUCER

Fig. 1. Mf;SW delay tine configuration with meander and grating line

transducers on YIG and double ground planes.
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Fig. 2. Transducer connections to ground plane structure. Liftoff

spacer thickness is assumed zero in this report.

7) The magnetic layer is assumed homogeneous and

isotropic,

B. Form of the Electromagnetic Fields

With reference to the geometry in Fig. 3, EX=EY=O,

and ~/ilz~O for all fields, and all field-component ampli-

tudes have the form f~(y) exp (i(cot – kx)). The biasing

field is z (directed, the magnetostatic approximation V X H

=0 applies, and the nonzero RF field components HX, HY,

BX, BY, and E= satisfy the following reduced equations:

8HY dHX
— =0

ax – ay

aE
~ = —iaBx
ay

aEz

ax— = ioBY

(1)

with

Following the analysis of Ganguly and Webb [3], GW, we

construct solutions for BY and HX in each of the three

regions and apply boundary conditions to evaluate field

amplitudes. The remaining nonzero fields E=, BX, and HY

are known in terms of BY and HX through (1) and (2). We

differ from GW by allowing arbitrary spatial current

distributions, employ the magnetostatic approximation at

~Y

GROUNDWANE

DIELECTRIC t,
o H

COMXJCTINGSTRIPS
(Ill) C3 ‘ @3

-qap- Z If >
[11)-20 YIG ‘P~ v%% Zp c~ , B2

Fig. 3. Geometry of the system composed of YIG film, conducting

strips, double ground plane, and dielectric regions.

the outset, and introduce a second ground plane. Part of

the analysis was previously done without using the MSSW

approximation, see [9].

The fields BY and HX in region q have the form [3]:

- azqBqexp(- P,lkly)]exp(- ikx)dk

HXq= -i~w s[Aqexp(Pqlkly)
—w

+ Bqexp(– p~lkly)]exp(– ikx)dk (3)

where in the malgnetostatic approximation

a11=:cY2,=l a,~=azq= 1

,s=: k/lkl, the sign of k

lx,2=:a, =p,, p-p,2s

ct22=kY2= p,, p + plzs. (4)

The electric field E= in each of the three regions is

obtained by multiplying the integrand of B“ by (– ti/k).

HY and BX are obtained from BY and HX using the permea-

bility matrix (2).

C. Boundaty Conditions and Dispersion Relation

Application of boundary conditions determine all Aq

and Bq in terms of an arbitrary surf a~e current distribu-

tion ..T(x). The normal component of 1? (= BY) vanishes at

the ground planes and it is continuous at the ~wo YIG–

dielectric interfaces. Tangential component of H (= HX) is

continuous along the unelectroded YIG–dielectric inter-

face and is discontinuous by the surface current along the

electrode portions of the surface. With reference to Fig.

3 and with superscripts denoting regions

BY= O, aty=tl and y= –(d-l-l)

B:= By[I, sty=–d

B 11= BY[ll, at y = ()
Y

Hr = H:l,
x sty= —d. (5;1

The boundary condition due to current in the periodic

structure is
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Hy – H;I =.J(x), aty=O (6)

where ~(x) is a surface current in the infinitely thin layer.

Application of boundary conditions (5) to BY and HX yield

the following equations relating all coefficients to Bz.

Then Bz is determined from boundary condition (6).

_ (T+ l)exp[(fl+ l)lkld] ~

‘1- (l+exp[-21kll]) 2

B = (T+ l)exp[(~- l)lkld]
1

exp(21kll)+ 1 ‘2

A2= T[exp(28jkld)]Bz

~,= (%~exP(2Bl~ld)- a’)
(1-exp[21kltl]) ‘2

~,= (~l~exp[VIW] -~2)
exp[–21k111]–l ‘2

(7)

where

~_ a2+tanh(lkll)

al –tanh(lkll) “

Upon substitution of field expressions

tain

(8)

into (6) we oh-

—i J [(~ s A3+B3)–(A2+ B2)]exp(– ikx)dk=.l(x)
—w

(9)

and multiplying through by e ‘W’, integrating with respect

to x from – m to + CO, and substituting (7) into (9), we

find

B2=isj(k)/[2d’( k,co)] (lo)

where

F(k, co)= (a2-a1Texp(2/31 kld))coth(lklt1)

-(1+ Texp(2~lkld)) (11)

and

~(k) = ~ m .l(x)exp(ikx)dx. (12)
—co

The six wave-amplitude coefficients A,, A2, As, B,, B2,

and B3 have now been expressed in terms of the current

distribution J(x) and the geometry via F(k, Q). It now

remains to solve for the dispersion relation that gives k as
a function of u. In Appendix I we evaluate the integrals in

(3) to obtain the fields in all regions. In carrying out the

solution for the fields, we find the dispersion relation (see

Appendix I, (A9))

Equation (13) is generally solved numerically. When

ground planes are removed, however, (tl and l~co) (13)

can be solved for k exactly, for a given frequency and

propagation direction s = t 1. The computed k and corre-

sponding u values are used to calculate all field compo-

nents given by (A5)–(A7) of Appendix I. We note also

that all field components are proportional to G where,

from (A8)

G=~(k)exp( – plkld)/F#~(k,w) (14)

with F~~ defined by (A4). The factor ~(k) is a Fourier

transform (12) of an arbitrary impressed current distribu-

tion ~(x). This observation provides a general procedure

for transducer analysis. For example, nonperiodic (or

periodic) conducting strips may be driven with arbitrary

current sources; then, an integration (i.e., Fourier trans-

form) over the source distribution will yield transducer

characteristics such as those given here in subsequent

sections, including radiation resistance and normal-mode

amplitudes.

III. POWER CARRIED BY A MSSW

With reference to Fig. 1 we calculate the far-field total

power carried by a MSSW propagation in the x direction

away from a transducer. The wave is bounded by the two

ground planes which are located at distances t,and 1 from

the YIG surfaces, and the wave is g~nerated by an arbi-

trary transducer gurren~ distribution ~(x)= ,Zl(x) A/cm.

From the VXE = – B equation

E:) = – (u/lkl)B~) (15)

and from the permeability matrix (2)

H$)= (B.$)/IJO+ ip#$))/~’z. (16)

Power density carried by a MSSW in the x direction is

equal to the real part of p@), where

~(o = (1 /’2)@@@* (17)

while total power for transducer aperture width 11is

P($) = (11/2)~~;i+ ~)E?)H?)* h. (18)

Substitution of field expressions, from Appendix I, for

E~) and H~) into (18) yields an expression for P(’), thus

(see Appendix II, also)

p(s)= ~Poll~ lG(k,ti)121A(k,)l
s

where

A(k,)=(7’’+l)2

[

sinh(2k,l)/4 – k~l/2

cosh’(k~l)
1

(19)

~-2pl~ld= [~2+tanh(lklz)] [qcoth(lklt,)+ 1 ]

[

sinh(2k3t1)/4– k~tl/2
+(al T~eDksd–a2e – ‘k~ ‘)2

[a, -tanh(lkll)][a2 coth(lklt,)- I] “ ’13) sinh’(k,tl) 1
For a given frequency u, the wavenumber k is found from

(13) which is the characteristic relationship between
frequency and wavenumber for the unelectroded structure

consisting of YIG slab and two ground planes separated

bv dielectrics.

+(al T~/2)(e2Pksd– 1) –(a2/2)(e-2Pksd– 1)–2k,dTMp11.

(20)

In evaluating (19), k,= Ikl satisfying (13) and

G(k, a) = ~(sk,)e ‘Pksd/F~~(k,, a). (21)
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In order to identify a radiation resistance we write (19) as

P(”) =(ll/2)Rp)\~(k)12 (22)

where

(’) is a function of YIG parameters andThe function RI

ground-plane spacing Cl and 1, and it is independent of

transducer parameters, while ~(k) is a spatial transform of

the transducer current distribution defined by (12).

IV. FLADIATION RESISTANCE FOR NONINTERACTING

ELECTRODES AND UNIFORM CURRENT MODEL

With spatially uniform current 10 flowing in each of N

equally spaced transducer conducting strips, ~(k) can be

evaluated in closed form. Consider a transducer made up

of N conducting strips each of width a carrying current l..

Define q = t 1. When q = + 1 all conductors are con-

nected in parallel to form a grating, and when q = – I

they are connected in series to form a meander line. The

Fourier transform ~(k) of this current distribution is

~(k)= ~“~ .l(x)e’kxdx= ~ ‘N- *)p+a’2.1(x)eikXdx (24)’

—w — a/2

;(k) =(,~o/a) ~~1 (q)”+ l~(n- ‘)p+a’’e’kxdx. (25)

(n–l)p–a/2

Here, the origin x= O has been shifted to the center of the

“first” strip. It can be shown that (25) will reduce to the

following expression.

The term in braces is an array factor and the term in

brackets IN an element factor. For a given k number the

element factor depends on stripwidth and the array factor

depends on strip placement. For N= 1 the single strip

result is clbtained. Substitution of (26) into (22) yields the

radiation resistance, defined by

Rg)=2P@/lIT\’ (27)

where

IT=[(l–q)+ (l+ ’q) N]Io/2 (28)

is the totid current into the transducer, and

1 – q ‘e ‘kspN 2
(29)

1 – qe’ksp

where R ~) is independent of transducer parameters. The

array factor in (29) will reduce when q = 1 for the grating

to that given by Wu et al. [5]. Also, when ground planes

are removed, tland l+ co, Wu’s ZO-+O and see’ ~1-+ 1; the

two models are then identical. This provides a connection

240
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Fig. 4. Total radiation resistance per unit width as a Ifunction
frequency for a single strip and for various wound plane spacings.

of

between the two models. The two models agree with

experiment reasonably well and differ only in second-

order effects. Moreover, when we remove a ground plane

by letting 1 or tl[ go to infinity, and let N= 1, we retrieve

GWS radiation resistance for the single strip.

For a grating, q = +1, 1== Nlo, and

‘- N2 [ (ak/2) 1 [ ‘in(kJ’/2)!“’30’
R(.) l,$!~) sin(ak,/2) 2 sin(k#N/2) 2

For a meander line, q = – 1, Z~ = l., and with N even

The total radiation resistance is important for matching

into the transducers. Fig. 4 gives curves of total radiation

resistance per unit width, (R~+) + R~–))/ 11, for the single-

strip case N= 1. R~+) and R~–) are obtained using (23)

and (29). For all curves, a = 178 pm, H =650 Oe, and

d= 6.25 pm. For the dashed curves l= 254 pm and t, is a

parameter, while for the solid curves tl= 254 pm and Z is

the parameter, The figure can be compared directly with

Fig. 3 of GW. l[n particular, our 1=(30 a) and ,(1= (30 a)

curves correspond to GW cases (a) and (b), respectively.

They correspond exactly when l-+eo and t,poc.

V. NORMAL MODES

By expressing the current distribution in terms of space

harmonics which match transducer periodicity, space-
harmonic opel ation of MSSW transducers may be

analyzed. Towa~rd this end l(x) is expressed in the uni-,

form current model, as follows:

l(X) =(210/p) ~ sinc(l’a/2p)
/,=1

. [(1 +TIcos(1’77))/2 ]cos(l’7rx/P) (32)
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where

sine(x) = [ sin(~x) ] /(7rx).

This is a rectangular function equal to 10 and q10 on

alternate conducting strips, respectively, and extends from

– co <x< m. Its fundamental period is p for a grating

and 2p for a meander. For a transducer made up of N

conducting strips over a length W in the x direction, we

have from (12) and (32):

i(k) =(210/P) i sim(l’a/2p)[(l + n @~’77))/2]
/,=1

“J“2 e~kXcos(l’mx/p)dx. (33)
- w/2

After integration we have

f(k) = i(lOW/p) ~ [(1+ q cos(1’~))/2]sinc( l’a/2p)
/,=1

“(

sin[(k+ l’n/p) W/2] + sin[(k – l’n/p) W/2]

(k+ ~’r/p) W/2 }(k- l’g/p) W/2 “

(34)

Now, for a sufficient number of strips, W-Np, where p is

the center-to-center spacing of conducting strips. For op-

eration near any harmonic, k w l’v/p, only two terms in

the infinite sum contribute significantly to the total ~(k),

one for each sign of s, and for a wave in either direction

we find from (22), (23), (27), (28), and (34) the following

radiation resistance valid near any space harmonic:

Rp)l, [ 1 +qcos(mr)]w . z
R~) =

[(1 -q)+(l +q)w] “nc ‘na’2p)

. sinc2[(k – nm/p)pN/2T]. (35)

Equation (35) gives the radiation resistance for each

normal mode n. When operation is at the fundamental,

(29) and (35) give identical results, thus providing a

quantitative relationship between the normal-mode and

superposition models. For operation away from the

fundamental the two, (29) and (35), radiation resistances

are different. Equation (29) is based on the superposition

of field amplitudes generated by isolated, independent

conducting strips. Equation (35) is based on the superposi-

tion of field amplitudes generated by identical but depen-

dent strips of an infinite array, with end effects neglected.

Because MSSW spatial harmonics are closely spaced in
frequency, typically on the order of l(K-MHz separation

at S band, (29) is more practical to use than (35). For

operation near the fundamental, however, either (29) or

(35) is adequate, but when the number of strips is large

(35) is more accurate because it is based on an infinite-

array approximation.

We now compare (35) with Emtage’s [8] (42). Take the

real part of 2, (42) and let k- ko, i.e., operation near

synchronism. We find

! z](Z,)~,AL= (4R1 N) ~ sinc2(/3N/2n)

for Emtage’s radiation resistance for an N element trans-
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Fig. 5. Normalized MSSW space-harmonic amplitudes, for uniform

current model versus stripwidth/spacing ratio. (a) Meander line trans-

ducer. (b) Grating line transducer.

ducer with opposing currents in adjacent lines. Now, in

(35), let q= – 1, q= 1, r/p=kO, R’=R[+)+R~-), and

11= 1, then

(R~)’roT = (R’lN2)sinc2(f3N/2t7)

()kwhere 8 = v —
k.

– 1 and 1 here is the length of each

element. These two expressions (ZT)~~AL and (R~)To~ for

radiation resistance differ by the scaling factor R‘/ R,

()R’4.Z.2
—.— —
R N Z.

where Z. and Z~ are microstrip parameters.

The k dependence is the same for both models, same
sine argument, which is the motivation for identifying
Emtage’s results with normal-mode theory. This, then

provides a connection between the two models.

Space-harmonic amplitudes may be obtained from (34).

As noted previously, all field-component amplitudes are

proportional to f(k). When ~(k) is evaluated near syn-

chronism, ks n~/p, the normalized field amplitude

is

z.= [(1 + q cos(n~))/2] sinc(na/2p)

. sinc[(k – n~/p)Np/2r]. (36)
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Normalized amplitudes at synchronism for a meander

and grating transducer are shown in Fig. 5 for the first

few harmonics. It is evident that the fundamental is most

efficiently generated or received with fine wire trans-

ducers, a/pmO, at the expense of high-harmonic content.

On the other hand, wide meander conducting strips a/Z.IS

1 are less efficient MSSW generators/receivers, but the

harmonic content is lower. Wide gratings, ajpw 1, are

even less efficient transducers. These conclusions are

based on the uniform current-distribution model. Modifi-

cations due to nonuniform current distribution are ex-

pected to be more important as operating frequency is

increased, This is considered in the next section.

W. NONUNIFORM CURRENT

DISTRIBUTION-MEANDER l,INE

Uniform current distribution is not realistic for good

conductors, and moreover, the actual distribution is

affected by currents in adjacent strips. A more realistic

current distribution can be obtained by applying exact

boundary condition to good conductors. Such a procedure

predicts current peaks at the strip edges like those indi-

cated, for a meander line with a/p= 1/2, in Fig. 6, It can

be shown that current distribution in a strip is governed

by the following equation [10], [1 1]:

J~P(x) n(a/p)— .
J FF W ~cos(2rx/p) - cos(wa/p) K[sin(ma/2p)]

(37)

where Ix I <a/2, and harmonic amplitudes are given by

,&+ * = (’rr/2)

[

P~(cos(7ra/p))

K[ sin(ma/2p) ]
1

.sinc[(k– (2n+ 1)/p) Np/27r]. (38)

These harmonic amplitudes (38) are similar to those of

Engan’s [12] for the interdigital transducer. In (37) sub-

script LP refers to Legendre Polynomial (nonuniform

current-distribution model) and FF to Flat Field (uniform

current-distribution model). In (38) F’~(cos(ma/p)) are

Legendre Polynomials with argument cos(na/p) and

K[sin(ma,/2p)] complete elliptic integrals of the first kind

with moclulus sin(ma/2p).

Space- harmonic content is quite different for the two

models, though for the fundamental the two do not differ

significantly for a/p < 1/2. At the strip center (x= O) and

for a/p ❑ =1/2, JLP/J~~ = 0.6. This means that for a/p<

1/2 fundamental strengths are of the same order of mag-

nitude for both models. Harmonic amplitudes versus a/p

for the LP model are plotted in Fig. 7. For a/p+l all

curves approach zero-not shown in the figure. The models

differ significantly for a/p > 1/2.
In Fig. 8, the first three harmonics of the LP and FF

model are compared. Note that for a/p < 1/2 the two

models are nearly equivalent for the fundamental. For

a/p+O the two models are identical. For a/p> 1/2 the

models diverge for all harmonics. Note especially the zero

m m

J.(x)]Lp

[J,(x)]FF

907

_aM;J

o a/’2 P

m -x

Fig, 6. Spatial current distribution in a meander line transducer con-
ducting strip for the Flat Field (FF) model and the Legendre Poly-

nomial (LP) model.
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Fig. 7. Space harnnonic amplitudes for MSSW meander line transducer

for nonuniform current-distribution model.

10

F=’
—-<~‘-.

-.+-

\ ~. ---

\\
--. = ,

\\\3 ----
05 \

~ . .

\, ‘; ‘\/-

\
/ \

\5 5 ‘\

/
/ \

\ \
/

\ \ / ------1
0 -’p

1: 01 02 0$ 04
\

0$, 06 08

\\
\ /’

_.__+l

\ /~\\
< /

MEANDER LINE TRANSDUCER -- ‘.. .ll
-05 --------

_ FLAT FIELO THEORY

L ‘-- LEGENCRE POLYNOMIAL THEORY

t
-,oL_._.LJ 1 i ( I , 1

Fig, 8. Comparison of harmonic content of Flat Field and Legendre
Polvnornial models.



908 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. M’rr-27, NO. 11, NOVEMRER 1979

third harmonic for LP compared with about 30-percent

FF third harmonic.

For interdigital and electromagnetic acoustic trans-

ducers, the LP theory is in better agreement with experi-

ment than the FF theory [11], [13], For fundamental

frequency operation, however, the FF theory is adequate

when a/p < 1/2.

VII. ANODIZATION OF THE FUNDAMENTAL No~

MODE

By analogy with electromagnetic acoustic and interdig-

ital transducer anodization theory [14], the radiation resis-

tance for weighted, nonperiodic, and apodized MSSW

transducers with varying stripwidths, separations and

lengths, respectively, can be written as follows:

R(# = ~:;, ~$, ‘inc[2an/Pn(3- ~)]

[

Q. I.sinc ~ -(3+q)/4 qn~ e-ik@.n 2 (39)

where

c(@)= [(l-q )+(l+q)N’]/2.

In general, there are N conducting strips, each with dif-

ferent width an, center-to-center spacing pn and length l..

The relation between k, and U, H, M, 1, t, is given by (13),

and it is independent of transducer geometry.

Equation (39) is the apodized form of (35), the normal-

mode radiation resistance. The apodized form of (29), the

independent conducting strip model, has been presented

elsewhere [15]. Equation (39) is important for predicting

bandpass filter response, with a specified weighting of

transducer element length, width, and element spacing.

The inverse problem of predicting transducer element

weighting in order to achieve a specified filter response

will require further investigation.

VIII. CONCLUSION

The equations presented here aid in MSSW transducer

optimization. Effects of varying stripwidth, center-to-

center spacing, striplength, and number of conducting

strips have been determined. The anodization equation

should be useful for tailoring the fundamental transducer

response. A quantitative relationship between a normal

mode and a superposition model has been established.

APPENDIX I

EVALUATION OF FIELDS

The integrals over k in (3) are performed using residue

theory for which

is required, where

F~(k, a)- [exp( –2fl [kid) ] F(k, to). (Al)

Using (11) we have

F=(k, u)= [a2exp(–2/llkld)– alT]coth(lkltl)

-[exp(-2~lkld)+

Upon differentiation of F~(k, u) with respect

defining this derivative to be F&(k, co), that is

F#~(k, a) - ~ [ F,(k, a) ]

we find

f

T]. (A2)

to k, and

(A3)

+2d~[ 1 – a2coth(lklt,)]exp( –2fllkld)

2p~~@[al coth(lkltl)+ l]sech2(lkll)—

[al-tafi(lkll)]’ 1

. (A4)

Here TM is equal to T (8) evaluated at the magnetostatic

wavenumbers obtained from F~(k, o) = O, (A2). These

wavenumber values produce poles in the integrands of (3).

This can be seen from (10) wherein Bz-+cc when F(kj ~)

-+0, and for finite k values F(k, a)-+0, when F~(k, co)+O

from (Al).

Evaluation of the integrals, in (3), for each of the three

regions by integration along a path enclosing the upper

half plane of complex k space yields the complex ampli-

tude of MSSWS in either direction (,s= * 1), as follows:

Region I

sinh[lkl(y+d+ l)]
By) = – spOG(T~ + 1)

cosh(lkll)

Hf)=iG(T~+l)
cosh[lkl(y+d+ l)]

(A5)
cosh(lkll) “

Region II

B~)== –spOG[alT~exp(B lkl(y +d))

–a2exp(– ~lkl(y+d))]

H:)= iG[ T~exp(81kl(y+d)) +exp(–@lkl(y+ d))].

(A6)

Region III

BY)= –spOG[a, T~exp(Plkld)

si~[lkl(tl–y)]
–a2exp(–~lkld)] sid(lkltl)

H!)= – iG[a, T~exp(/31kld)
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where

G= (~(k) exp(– ~lkld))/F$~(k,a) (A8)

with the constraint F~(k, co)= O. Setting (A 1) equal to zero

and using (8) yields the dispersion relation

~-,p,~l~= [~z+tafi(l~lz)] [~,~oth(lkltl)+ 1]

[c% -tafi(lkll)] [azcoth(lkltl)- I] “ ‘A9)

A common factor exp[i(ut – kx)] should be included in all

field components. For a given frequency u, the wavermm-

ber k is found from (A9), which is the characteristic

relationship between frequency and wavenumber for the

unelectro ded structure consisting of YIG slab and two

ground planes separated by dielectrics.

APPENDIX II

EVALUATION OF TOTAL POWER

From (18)

(Ill)

@2)

Subscripts 1, II, and III indicate regions. In all three

regions (15) for E$) is used. In regions I and III H:)=

B~)/po, :and in region H H~) is given by (16). Then

Substitution of (A5)-(A7) into

expressicm (19) for total power.

(B3)

(B3) yields the desired
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