902

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-27, NO. 11, NOVEMBER 1979

Magnetostatic Surface-Wave Transducers

JAMES C. SETHARES, MEMBER, IEEE

Abstract—Magnetostatic surface-wave (MSSW) transducer theory is
extended and generalized. A Fourier transform relation is established
between MSSW field amplitudes and transducer spatial current distribu-
tion, Expressions are developed for the radiation resistance of periodic
meander and grating transducers, spatial harmonic amplitudes, and radia-
tion resistance for uniform and monuniform current distribution models.
An expression is given for the radiation resistance of apodized transducers.
The results enable one to predict transducer frequency response for a
specified weighting of transducer element width, length, and spacing,

I. INTRODUCTION

REVIOUS investigations [1]-[7] related to magneto-

static surface-wave (MSSW) technology have sug-
gested the possibility of practical sophisticated passive
microwave devices for direct signal processing at micro-
wave frequencies. Such a technology would extend
processing capabilities now performed by SAW devices at
UHF frequencies into the microwave region, and would
constitute a significant advance in signal-processing capa-
bilities. A review of such magnetostatic-wave devices is
provided by Collins et al. [7] (1977) in which the relative
merits of CCD, SAW, and MSSW technologies are com-
pared as to their time-frequency characteristics. However,
very little general design theory has been available for
periodic MSSW transducers. Toward this end, MSSW
transducer theory is extended and generalized. Some re-
cent work along these lines has also been done by Emtage
(8] and Wu [5] et al. Emtage used a normal-mode ap-
proach to characterize a multielement transducer, and Wu
used superposition of independent conducting strip ele-
ments. The present work provides a quantitative relation
between the normal-mode approach and superposition. In
addition, Emtage analyzed the interaction of a current
strip with a magnetic system in terms of surface permea-
bilities. He defined a useful coupling constant and ob-
tained expressions for the power carried by a running
wave in a multilayer magnetic system, both in terms of
surface permeabilities. The surface permeability approach
is useful for analyzing multilayer magnetic systems. Wu
presenied expressions for the insertion loss of multiele-
ment transducer pairs, along with experimental verifica-
tion of their low-loss microstrip transducer model. Here, a
Fourier transform relation is established between MSSW
field amplitudes and transducer spatial current distribu-
tion. Design equations are presented, including radiation
resistance for periodic and nonperiodic meander and grat-
ing transducers, spatial harmonic amplitudes and radia-
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tion resistance for uniform and nonuniform current-dis-
tribution models, and radiation resistance for apodized
transducers. In addition, the transducer model presented
here differs from others in that the present one does not
contain microstrip parameters in the expression for radia-
tion resistance. A connection between the various models
is presented.

II. Basic THEORY

A. Assumptions

The system analyzed in this report is shown in Fig. 1. A
transducer in the form of a meander or a grating line is
excited with an RF current. Transducer connections to
the ground plane structure and to input/output lines are
shown in Fig. 2. Currents produce RF magnetic fields
which generate a variety of propagating modes within the
structure. One particular mode having potential for signal
processing ‘directly at microwave frequencies is the
MSSW., This is the mode of interest here. It is nonrecipro-
cal, propagates perpendicular to the magnetic biasing
field, guided by two parallel surfaces (though they need
not be precisely parallel), and its energy is concentrated
near one surface. It propagates with a velocity between
that of acoustic and light waves (velocity is magnetically
tunable), it handles milliwatts of power, and, in practical
situations, its frequency range is between 2 and 15 GHz.
The mode is a coupled electromagnetic—ferromagnetic TE
mode for which Maxwell’s equations, the linearized
gyromagnetic equation, and EM boundary conditions are
simultaneously satisfied.

All important restrictions and assumptions made in the
analysis are listed below.

1) End effects caused by arrays of finite extent are
neglected.

2) MSSW power is calculated in the far-field region
where the transducer has negligible effect on propagation
modes. .

3) The magnetostatic approximation VX H~0 is em-
ployed.

4) Nonlinear effects are neglected.

5) A two-dimensional problem with uniformity along
the length of conduction strips is considered.

6) Good conductors are assumed and the thickness of
conducting strips approaches zero.!

'A consequence of the small thickness ¢ and high conductivity o
conducting strip approximation is that when o—c0 skin depth §—0, and
then two limiting cases must be considered. When § <« #, thickness ¢ must
be assumed finite in the analyses. When 8>, conduction strip thickness
can be neglected as is done here. As a practical matter, for aluminum at
3 GHz, §~1.5 pm. In this case the present theory would be rigorous only
for strip thickness much less than 1.5 pm.
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Fig. 1. MSSW delay line configuration with meander and grating line

transducers on YIG and double ground planes.
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Fig. 2. Transducer connections to ground plane structure. Liftoff
spacer thickness is assumed zero in this report.

7) The magnetic layer is assumed homogeneous and
isotropic.

B. Form of the Electromagnetic Fields

With reference to the geometry in Fig. 3, E, = E, =0,
and 9/9z—0 for all fields, and all field-component ampli-
tudes have the form f(y)exp(i(w?—kx)). The biasing
field is z directed, the magnetostatic approximation VX H
~0 applies, and the nonzero RF field components H,, H,,
B,, B,, and E, satisfy the following reduced equations:

0H, _0H, -0
ox dy
oF, e iuB
% = —iwB,
dE, .
e = ley
oB 0B
X +___¥_ —
ox dy (1)
with
Bx Y1y ip‘12 Hx
= . . 2)
By MO{ Ty M Hy (

Following the analysis of Ganguly and Webb [3], GW, we
construct solutions for B, and H, in each of the three
regions and apply boundary conditions to evaluate field
amplitudes. The remaining nonzero fields E,, B,, and H,
are known in terms of B, and H, through (1) and (2). We
differ from GW by allowing arbitrary spatial current

distributions, employ the magnetostatic approximation at
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Fig. 3. Geometry of the system composed of YIG film, conducting
strips, double ground plane, and dielectric regions.

the outset, and introduce a second ground plane. Part of
the analysis was previously done without using the MSSW
approximation, see [9].
The fields B, and H, in region g have the form [3]:
o0
Byq = “0.[_ o [ alqu CXp( ,Bqlkiy)
— a,, B, exp(— B,|k| ) |exp(— ikx) dk
o
H =~ if s[Aqexp( ,8q|k|y)
— o0

+ B_exp(— B,|k|y) |exp(— ikx) dk
where in the magnetostatic approximation

Bi=B3=1 B=V pn/p =B
ap=ay =1 aj3=ay=1
s=k/|k|, the sign of k
o=y = fiy B figpS
ap=ay= piyy B+ s 4
The electric field E, in each of the three regions is

obtained by multiplying the integrand of B, by (—w/k).
H, and B, are obtained from B, and H, using the permea-
bility matrix (2).

)

C. Boundary Conditions and Dispersion Relation

Application of boundary conditions determine all 4,
and B, in terms of an arbitrary surface current distribu-
tion J(x). The normal component of 8 (= B,) vanishes at
the ground planes and it is continuous at the two YIG-
dielectric interfaces. Tangential component of H (= H,) is
continuous along the unelectroded YI1G-dielectric inter-
face and is discontinuous by the surface current along the
electroded portions of the surface. With reference to Fig.
3 and with superscripts denoting regions

B, =0, aty=t, and y=—(d+1)
B;=By‘“, aty=—d

Bl'=B", aty=0

H=H! aty=-d. (5)

The boundary condition due to current in the periodic
structure is
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H - H'=J(x), (6)

where J(x) is a surface current in the infinitely thin layer.
Application of boundary conditions (5) to B, and H, yield
the following equations relating all coefficients to B,.
Then B, is determined from boundary condition (6).

_ (T+ Dexp[ (B + D]k|d]
! (1+exp[ —2|k|1]) 2
_ (T+Dexp[(B-1)]kld]
! exp(2|k|l)+1 2
Ay = T[exp(25|K|d) | B,
(@ Texp(2B|k]d) — a,)
(1-exp[2/k|t,]) °
_ (o, Texp[2B|k|d] — ay)
: exp[ —2|k[¢,] -1 2

aty=0

A3=

where
_ o, +tanh(|&|7)

o, — tanh([k|7) " ®

Upon substitution of field expressions into (6) we ob-
tain

—if”

— o0

s[(A3+ B;)—(A,+ B,) Jexp(— ikx) dk = J(x)

©)

and multiplying through by e’*, integrating with respect
to x from —oo to + o0, and substituting (7) into (9), we
find

ik'x

B,=isJ(k)/[2nF(k,w)] (10)

where
F(k, ) = (@, a, Texp(2B | kld))coth(|k|1,)

—(1+ Texp(2Bik|d)) (11)
and

J(k)= fj:oJ(x)exp(ikx)dx. (12)

The six wave-amplitude coefficients 4,, 4,, 4;, B,, B,,
and B; have now been expressed in terms of the current
distribution J(x) and the geometry via F(k,w). It now
remains to solve for the dispersion relation that gives k as
a function of w. In Appendix I we evaluate the integrals in
(3) to obtain the fields in all regions. In carrying out the
solution for the fields, we find the dispersion relation (see
Appendix I, (A9))

[ &, +tanh([|)) ][ &, coth(|k|¢,) + 1]
[ @, —tanh(|k|7) ][ aycoth(|k|s,) — 1] (13)

e —2Blkld

For a given frequency w, the wavenumber & is found from
(13) which is the characteristic relationship between
frequency and wavenumber for the unelectroded structure
consisting of YIG slab and two ground planes separated
by dielectrics.
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Equation (13) is generally solved numerically. When
ground planes are removed, however, (¢, and /—o0) (13)
can be solved for k exactly, for a given frequency and
propagation direction s= + 1. The computed k and corre-
sponding w values are used to calculate all field compo-
nents given by (A5)-(A7) of Appendix I. We note also
that all field components are proportional to G where,
from (A8)

G=J(k)exp(— B|k|d)/ F{k,«) (14)

with F{}) defined by (A4). The factor J(k) is a Fourier
transform (12) of an arbitrary impressed current distribu-
tion J(x). This observation provides a general procedure
for transducer analysis. For example, nonperiodic (or
periodic) conducting strips may be driven with arbitrary
current sources; then, an integration (i.e., Fourier trans-
form) over the source distribution will yield transducer
characteristics such as those given here in subsequent
sections, including radiation resistance and normal-mode
amplitudes.

III.

With reference to Fig. 1 we calculate the far-field total
power carried by a MSSW propagation in the x direction
away from a transducer. The wave is bounded by the two
ground planes which are located at distances ¢, and / from
the YIG surfaces, and the wave is generated by an arbi-
trary transducer current distribution J( (x)=2J(x) A/cm.

From the VXE=—B equation

PowegR CARRIED By A MSSW

E = —(w/|k|) B (15)
and from the permeability matrix (2)
H;s)"(By(s)/ﬂo'*' i,ule,(f))/uzz. (16)

Power density carried by a MSSW in the x direction is
equal to the real part of p*, where

PO=(1/2)EPH (17)
while total power for transducer aperture width /, is
PO=@/2)[" EOH®" 4. (18)
~(l+d)

Substitution of field expressions, from Appendix I, for
E® and H® into (18) yields an expression for P, thus
(see Appendix II, also)

ILox

PO =—"2|G(k,w)P|4(k,)| (19)
2k;
where
A(k)= (T, +1)? sinh(2k,l)/4—k /2
cosh?(k 1)
+(o TyyePs?— ape™Phs )’ sinh(2k,t,)/4—k,t,/2
sinh?(k,¢,)
+ (0, T /2)(¥¥*s? = 1) — (o /2) (e~ ks — 1) =2k, dT ) p,,.
(20)
In evaluating (19), k, =| k| satisfying (13) and
Gk,w)=J(sk)e st/ Fify(k,). (21
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In order to identify a radiation resistance we write (19) as

PO =(1,/2) ROk (22)
where
—28k.d
RO=—1C 7 a(k)|. (23)

k2| Pk, )

The function R is a function of YIG parameters and
ground-plane spacing ¢, and /, and it is independent of
transducer parameters, while J(k) is a spatial transform of
the transducer current distribution defined by (12).

IV. RADIATION RESISTANCE FOR NONINTERACTING

ELECTRODES AND UNIFORM CURRENT MODEL

With spatially uniform current I, flowing in each of N
equally spaced transducer conducting strips, J(k) can be
evaluated in closed form. Consider a transducer made up
of N conducting strips each of width a carrying current I,
Define n=+1. When n=+1 all conductors are con-
nected in parallel to form a grating, and when n=—1
they are connected in series to form a meander line. The
Fourier transform J(k) of this current distribution is

Jy= [ et ax= | N=DPrar2 y ekrax (24

7 A +1 ((r=Dp+a/2

J(k)=(I,/a) 2 (n)" e dx. (25)
n=1 (n—Dp—a/2

Here, the origin x =0 has been shifted to the center of the
“first” strip. It can be shown that (25) will reduce to the
following expression.

sin(ka/2) ] {

(ak/2) (26)

The term in braces is an array factor and the term in
brackets 1s an element factor. For a given k number the
element factor depends on stripwidth and the array factor
depends on strip placement. For N=1 the single strip
result is obtained. Substitution of (26) into (22) yields the
radiation resistance, defined by

l_nNexkpN }

KM=Q{ p—

RY=2P® /|I? 27
where
Lr=[(1=m)+(1+n)N]I/2 (28)
is the total current into the transducer, and
) 2R,
=)+ (A +)N?
[sin(ak/D) Pl=gtetse
(ak,/2) 1 —ne*s?

where R{) is independent of transducer parameters. The
array factor in (29) will reduce when n=1 for the grating
to that given by Wu ef al. [5]. Also, when ground planes
are removed, ¢, and /-0, Wu’s Z,—0 and sec® Bi—1; the
two models are then identical. This provides a connection
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Fig. 4. Total radiation resistance per unit width as a function of
frequency for a single strip and for various ground plane spacings.

between the two models. The two models agree with
experiment reasonably well and differ only in second-
order effects. Moreover, when we remove a ground plane
by letting / or ¢, go to infinity, and let N=1, we retrieve
GW'’s radiation resistance for the single strip.

For a grating, n=+1, I.= NI, and

RO — llRl(S) sin(aks/Z) 2 sin(k&pN/Z) 2 (30)
"Nt (ak/2) sin(k,p/2) |
For a meander line, 5= —1, I;=1I,, and with N even
R®=1Mnsm@&ﬂ)2smwwNﬂ){ -
m T ek /2) | | cos(kep/2)

The total radiation resistance is important for matching
into the transducers. Fig. 4 gives curves of total radiation
resistance per unit width, (R{Y+ R{™)/1,, for the single-
strip case N=1. R{") and R’ are obtained using (23)
and (29). For all curves, a=178 pm, H=650 Oe, and
d=6.25 um. For the dashed curves /=254 ym and ¢, is a
parameter, while for the solid curves #;,=254 pm and / is
the parameter. The figure can be compared directly with
Fig. 3 of GW. In particular, our /=(30 @) and ¢,=(30 a)
curves correspond to GW cases (a) and (b), respectively.
They correspond exactly when /—co and #;—00.

V. NORMAL MODES

By expressing the current distribution in terms of space
harmonics which match transducer periodicily, space-
harmonic operation of MSSW transducers may be
analyzed. Toward this end J(x) is expressed in the uni-
form current model, as follows:

J(x)=Q21,/p) 121 sinc(!'a/2p)

[(1+qcos(/'m)/2]cos(l'mx /p)  (32)
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where
sinc(x) = [sin(qrx) ] /(7x).

This is a rectangular function equal to I, and 7/, on
alternate conducting strips, respectively, and extends from
— o0 <x<oo. Its fundamental period is p for a grating
and 2p for a meander. For a transducer made up of N
conducting strips over a length W in the x direction, we
have from (12) and (32):

J(k)=(21,/p) 121 sinc(!’a/2p)[ (1+ncos(!'m))/2]

~fW/2 e’**cos(l'mx /p)dx.

-w/2

(33)

After integration we have

J(k)y=i(1,W/p) 2 [(1+mncos(!'m))/2]sinc(I'a/2p)
r=1

{ sin[ (k+U'a/p)W/2] sin[(k—1'n/p)W/2] }
(k+U'm/p)W /2 (k—U'w/p)W/2 )
(34)

Now, for a sufficient number of strips, W~ Np, where p is
the center-to-center spacing of conducting strips. For op-
eration near any harmonic, k~/’#/p, only two terms in
the infinite sum contribute significantly to the total J(k),
one for each sign of s, and for a wave in either direction
we find from (22), (23), (27), (28), and (34) the following
radiation resistance valid near any space harmonic:

R4 [ 1+mcos(nm) | N2
(A=) +(1+n)N?]
-sinc[ (k—nm/p)pN/27]. (35)

Equation (35) gives the radiation resistance for each
normal mode n. When operation is at the fundamental,
(29) and (35) give identical results, thus providing a
quantitative relationship between the normal-mode and
superposition models. For operation away from the
fundamental the two, (29) and (35), radiation resistances
are different. Equation (29) is based on the superposition
of field amplitudes generated by isolated, independent
conducting strips. Equation (35) is based on the superposi-
tion of field amplitudes generated by identical but depen-
dent strips of an infinite array, with end effects neglected.

Because MSSW spatial harmonics are closely spaced in
frequency, typically on the order of 100-MHz separation
at § band, (29) is more practical to use than (35). For
operation near the fundamental, however, either (29) or
(35) is adequate, but when the number of strips is large
(35) is more accurate because it is based on an infinite-
array approximation.

We now compare (35) with Emtage’s [8] (42). Take the
real part of Z, (42) and let k~k,, ie., operation near
synchronism. We find

RW® =

m

sinc*(na/2p)

ZZ
< }sincz(GN/Zw)

(Z)rear=| (4RI N) S

m

for Emtage’s radiation resistance for an N element trans-
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Fig. 5. Normalized MSSW space-harmonic amplitudes, for uniform
current model versus stripwidth /spacing ratio. (a) Meander line trans-
ducer, (b) Grating line transducer.

ducer with opposing currents in adjacent lines. Now, in
(35), let n=—1, 9=1, m/p=ko, R’=R{P+R{7, and
l,=1, then

(R,)ror=(R’IN?)sinc*(6N /27)

where 0=7r(—:——1) and / here is the length of each
0

element. These two expressions (Z;)ggar and (R, )ror for
radiation resistance differ by the scaling factor R’/ R,

R _4(z}Y
R N\Zz

m

where Z, and Z,, are microstrip parameters.

The k£ dependence is the same for both models, same
sinc argument, which is the motivation for indentifying
Emtage’s results with normal-mode theory. This, then
provides a connection between the two models.

Space-harmonic amplitudes may be obtained from (34).
As noted previously, all field-component amplitudes are
proportional to J(k). When J(k) is evaluated near syn-
chronism, k~nw /p, the normalized field amplitude

A,=|J (k) /(1N)]
is
A4,= [(1+ncos(nm))/2|sinc(na/2p)

-sinc[ (k—nw/p)Np/27]. (36)
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Normalized amplitudes at synchronism for a meander
and grating transducer are shown in Fig. 5 for the first
few harmonics. It is evident that the fundamental is most
efficiently generated or received with fine wire trans-
ducers, a/p~0, at the expense of high-harmonic content.
On the other hand, wide meander conducting strips a/p~
1 are less efficient MSSW generators/receivers, but the
harmonic content is lower. Wide gratings, a/p~1, are
even less efficient transducers. These conclusions are
based on the uniform current-distribution model. Modifi-
cations due to nonuniform current distribution are ex-
pected to be more important as operating frequency is
increased. This is considered in the next section.

VI. NoNUNIFORM CURRENT
DiSTRIBUTION-——MEANDER LINE

Uniform current distribution is not realistic for good
conductors, and moreover, the actual distribution is
affected by currents in adjacent strips. A more realistic
current distribution can be obtained by applying exact
boundary condition to good conductors. Such a procedure
predicts current peaks at the strip edges like those indi-
cated, for a meander line with a/p=1/2, in Fig. 6. It can
be shown that current distribution in a strip is governed
by the following equation [10}], [11]:

Jip(x) _ n(a/p)

Jer V2 Vcos(2mx /p) — cos(wa /p) K[sin(7a/2p)|
(37)

where |x| <a/2, and harmonic amplitudes are given by

P,(cos(wa/p))
K[sin(wa/2p) |

-sinc[(k—(2n+1)/p)Np/27]. (38)

These harmonic amplitudes (38) are similar to those of
Engan’s [12] for the interdigital transducer. In (37) sub-
script LP refers to Legendre Polynomial (nonuniform
current-distribution model) and FF to Flat Field (uniform
current-distribution model). In (38) P, (cos(wa/p)) are
Legendre Polynomials with argument cos(wa/p) and
K[sin(wa /2p)] complete elliptic integrals of the first kind
with modulus sin(7a /2p).

Space-harmonic content is quite different for the two
models, though for the fundamental the two do not differ
significantly for a/p <1/2. At the strip center (x =0) and
for a/p=1/2, J1p/Jsp=0.6. This means that for a/p <
1/2 fundamental strengths are of the same order of mag-
nitude for both models. Harmonic amplitudes versus a/p
for the LP model are plotted in Fig. 7. For a/p—1 all
curves approach zero-not shown in the figure. The models
differ significantly fora/p>1/2.

In Fig. 8, the first three harmonics of the LP and FF
model are compared. Note that for a/p<1/2 the two
models are nearly equivalent for the fundamental. For
a/p—0 the two models are identical. For a/p>1/2 the
models diverge for all harmonics. Note especially the zero

Agpi1=(7/2)
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third harmonic for LP compared with about 30-percent
FF third harmonic.

For interdigital and electromagnetic acoustic trans-
ducers, the LP theory is in better agreement with experi-
ment than the FF theory [11], {13]. For fundamental
frequency operation, however, the FF theory is adequate
when a/p<1/2.

VII. APODIZATION OF THE FUNDAMENTAL NORMAL

MoDE

By analogy with electromagnetic acoustic and interdig-
ital transducer apodization theory [14], the radiation resis-
tance for weighted, nonperiodic, and apodized MSSW
transducers with varying stripwidths, separations and
lengths, respectively, can be written as follows:

() R o

m T C(’n,N) 2 Slnc[zan/pn(3_ ”I)]

n=1

2

k .
-sinc[—-{—?———(3+n)/4Jn” I e~kan  (39)

where

e(n,N)=[(1=n)+(1+q)N?]/2.
In general, there are N conducting strips, each with dif-
ferent width a,, center-to-center spacing p, and length /,.
The relation between ., and w, H, M, [, ¢, is given by (13),
and it is independent of transducer geometry.

Equation (39) is the apodized form of (35), the normal-
mode radiation resistance. The apodized form of (29), the
independent conducting strip model, has been presented
elsewhere [15]. Equation (39) is important for predicting
bandpass filter response, with a specified weighting of
transducer element length, width, and element spacing.
The inverse problem of predicting transducer element
weighting in order to achieve a specified filter response
will require further investigation.

VIIIL

The equations presented here aid in MSSW transducer
optimization. Effects of varying stripwidth, center-to-
center spacing, striplength, and number of conducting
strips have been determined. The apodization equation
should be useful for tailoring the fundamental transducer
response. A quantitative relationship between a normal
mode and a superposition model has been established.

CONCLUSION

APPENDIX [
EvALUATION OF FIELDS

The integrals over k in (3) are performed using residue
theory for which

d
% Lk 0)]
is required, where

Fp(k, o) =[exp(—28|k|d) | F(k,w). (A1)
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Using (11) we have
Fr(k,w)=[ ayexp(—2B|k|d)— «,T|coth(|k|z,)
—[exp(—2B|k|d)+ T]. (A2)

Upon differentiation of Fr(k,w) with respect to k, and
defining this derivative to be F{p(k,w), that is

PRk 0)= o [ Fr(k0)] (A3)

we find

F?Xl:s{tl(alTM_ "‘2CXP(—2:8lkld))CSCh2(|k|t1)

+2dp[1— a,coth(|k|s,) Jexp(—2B|k|d)

_ 2pyy Bl ay coth(|k]#,) + 1 Jsech?(|k|/)
[, —tanh(]k|/)]?

}. (A4)

Here T), is equal to T (8) evaluated at the magnetostatic
wavenumbers obtained from Fp(k,w)=0, (A2). These
wavenumber values produce poles in the integrands of (3).
This can be seen from (10) wherein B,—o0 when F(k,w)
—0, and for finite k values F(k,w)—0, when F(k,w)—0
from (Al).

Evaluation of the integrals, in (3), for each of the three
regions by integration along a path enclosing the upper
half plane of complex k space yields the complex ampli-
tude of MSSW’s in either direction (s= = 1), as follows:
Region 1

sinh[ |k|(y+d+1)]
cosh(|k|/)

cosh[|kl(y +d+1)]

cosh(|k|/)

B = — spyG(Tyy +1)

H®=iG(T,,+1) (A5)

Region I1
B = — spoG[ a; Ty exp( Blk|(y + d))
—ayexp(— Blkl(y+d))]
HY =iG[ Ty, exp( BIk|(y +d)) +exp(— BIk|(y + d))].
(A6)
Region 111
B{ = — spyG[ o, Ty exp( Bl k|d)

.nh k —
—azexp(—mkld)]%
1
H® = —iG[ a, Ty, exp( Bk|d)

cosh[]k[(tl—y)]
sinh(|k|t;)

— ayexp(~ Blk|d) ] (A7)
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where

G=(J(k)exp(— B|k|d))/ FiR(k,) (A8)

with the constraint F(k,w)=0. Setting (A1) equal to zero
and using (8) yields the dispersion relation

[ a,+tanh(|k|7) ][ & coth(|k|s,) +1]
[ @, —tanh(|k|7) ][ a,coth(|k]z,) — 1] )

e—lﬁ"‘ld:

(A9)

A common factor exp[i(w? — kx)] should be included in all
field components. For a given frequency w, the wavenum-
ber k is found from (A9), which is the characteristic
relationship between frequency and wavenumber for the
unelectroded structure consisting of YIG slab and two
ground planes separated by dielectrics.

APPENDIX I1
EVALUATION OF TOoTAL POWER

P<s>=(ﬁ) [" EOHS & (B1)
(+d)

[ - - 0 s 5)*
po=g ([0 (BR[| [EOHY ]

+ fo "[Ez(S)Hy(s)‘]mdy}. (B2)

Subscripts I, II, and III indicate regions. In all three
regions (15) for E is used. In regions I and IIl H®=
B /g, and in region IT H® is given by (16). Then

I\ 1 —d
P(:r)=_i(__l_)___{ B2
|k| 2/ po f—(l+d)| 4 T

1 o .
1 ©R_; OO 4
o f_d[lBy P —im poBSOHD | dy

h
+ [ 1B Bucy |

Substitution of (A5)-(A7) into (B3) yields the desired
expression (19) for total power.

(B3)
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